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Abstract

This paper deals with the combined forced and free convection heat transfer of a yield stress fluid in a horizontal
duct heated uniformly with a constant heat flux density. It is assumed that (i) the rheological behavior of the fluid
can be described by the Herschel–Bulkley model and that the consistency K� varies with temperature T�, as
K� = aexp(�bT�); (ii) the variation of the fluid density q, with temperature, q ¼ qeð1 � bðT � � T �

eÞÞ, is considered
important only in the buoyancy term and (iii) the Péclet number is sufficiently large so that it is possible to resort to
an asymptotic solution. The aim of this study is to quantify the effect of the rheological properties on the magnitude
of the secondary flows induced by the thermo-dependency of K� and q. Expressions for local Nusselt number and wall
shear stress are given. Finally, to be consistent with the variation along the duct of the axial velocity in the central zone
around the axis, due to the thermo-dependency of K� or q, the pseudo-plug zone and pseudo-yield surface notions are
introduced. Some characteristics of the stresses distribution within the pseudo-plug zone are discussed.
� 2005 Elsevier Ltd. All rights reserved.
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1. Introduction

Heat transfer in non-Newtonian fluids is of practical
importance in many industrial applications for example
in paper making, drilling of petroleum products, slurry
transportation and processing of food and polymer
solutions. The literature reviews made by Cho and
Hartnett [1] and Shenoy and Mashelkar [2] show that
the thermal convection in yield stress fluids has received
little attention prior to 1982, despite the fact that
they are frequently encountered in the above-mentioned
0017-9310/$ - see front matter � 2005 Elsevier Ltd. All rights reserv
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engineering processes. Bird et al. [3] gave a list of mate-
rials that fall into this category of fluids. In the two last
decades, very few papers dealing with the thermal con-
vection for a yield stress fluids were published. In the
following section, the heat transfer characteristics of
such fluids in laminar flow in plane channel, circular
duct or annular duct described in the literature are
summarized.
1.1. Literature review

Forced convection in Bingham fluids in a circular
pipe with uniform wall temperature, assuming fully
developed flow and thermally developing field (Graetz
ed.
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problem), was considered by Hirai [4] and Wissler and
Schechter [5]. Under additional assumptions of constant
rheological properties and negligible both axial conduc-
tion and viscous dissipation, the energy equation was
solved by separation of variables method leading to an
eigenvalue problem. They determined numerically the
first seven eigenvalues and eigenfunctions for different
yield stress (sy) to wall shear stress (sw) ratios r0 = sy/
jswj = 0, 0.25, 0.5, 0.75 and 1. Later, Blackwell [6] found
that the number of eigenvalues was not sufficient to eval-
uate the heat transfer coefficient, particularly near the
entrance section of the heating zone. Then, he extended
the calculations to include the first 60 eigenvalues. The
axial variation of the Nusselt number, Nu, was com-
puted for r0 = 0, 0.2, 0.4, 0.6, 0.8 and 1.0. As expected,
Nu increases with increasing r0, because of the increase
of the wall velocity gradient. Johnston [7] solved the
Graetz problem by including the axial conduction term
in the energy equation. He concluded that, in order to
ignore the axial conduction the Péclet number, Pe (de-
fined with the bulk velocity and the diameter of the
pipe), must be greater than 1000. Min et al. [8] extended
the Graetz problem by taking into account both axial
conduction and viscous dissipation. The authors showed
that the heat transfer characteristics in the entrance re-
gion were significantly affected by the yield stress when
including the viscous dissipation. This effect was also ob-
served in the case of uniform wall heat flux [9]. The
simultaneous development of the hydrodynamic and
thermal fields in the entrance region of circular pipe
for Bingham fluid was first considered by Vradis et al.
[10]. Uniform wall temperature and constant rheological
properties were assumed. The fully elliptic governing
equations including the viscous dissipation term were
solved numerically. The results were presented for Pra-
ndtl, Pr, and Brinckman, Br, numbers in the range of
[0.1,1] and for Reynolds number of order 10. As
expected, the larger the yield stress the shorter is the
dynamic entrance length. In addition, as for the situa-
tion of thermally developing flow, the numerical results
indicated that the yield stress effect became more signif-
icant when the viscous dissipation was taken into
account. Min et al. [11] revisited the problem considered
by Vradis et al. [10] and gave more accurate numerical
results. However, same trends were observed for the
yield stress effects.

In the previous studies, the fluid rheological proper-
ties were considered independent of temperature. This
can be a serious assumption since, in many cases this ef-
fect has a significant influence on heat transfer coeffi-
cient. Forrest and Wilkinson [12] analyzed the heat
transfer for Herschel–Bulkley fluid flows inside tubes.
It was assumed that the flow was fully developed at
the entrance to the heated section. The axial conduction
and the viscous dissipation as well as the radial velocity
and the axial velocity gradients were neglected. The
thermo-dependency of the rheological parameters is re-
stricted only to the consistency as it is more significant.
According to the authors, the yield stress is mainly
dependent on a mechanical locking of the fluid which
is essentially temperature independent. The resulting
momentum and energy equations were solved numeri-
cally and the results were illustrated graphically. It was
shown that a decrease of the consistency near the heated
wall induced an increase of the wall velocity gradient
and therefore that of the heat transfer coefficient. The
range of the parameters considered by the authors was
limited and it is difficult to interpolate their results for
a general engineering design purposes. Naı̈mi et al. [13]
studied experimentally the heat transfer for an aqueous
solution of Carbopol 940 flow in an annular duct with
a rotating inner cylinder. The outer cylinder was heated
at constant heat flux density and the inner one was as-
sumed adiabatic. The rheological behavior of the used
fluid was described by a Herschel–Bulkley model with
temperature-dependent consistency. They determined
the evolution of the local Nusselt number and observed
that: (i) the Nusselt number rose with the increasing
imposed heat flux; (ii) this rise was more important when
the inner cylinder was rotating with an angular velocity,
X, such that the dimension of the plug zone was reduced
to zero. Finally, the experimental results were presented
in the form of Nusselt number correlation. The effect of
the variation of the consistency, K�, with temperature on
heat transfer was described by a dimensionless number
bU�Dh

2k : Nu / bU�Dh

2k

� �t
, where b is the temperature exponent

of K�: K� = aexp(�bT�). The exponent, t, was set to 0.1
for Poiseuille flow and to 0.16 when the inner cylinder
was rotating with a velocity such that the plug region
was suppressed. According to these authors, the plug re-
gion inhibited the development of radial velocity and
therefore limited the axial velocity deformation. Conse-
quently, the thermo-dependent consistency effect was re-
duced. This tendency was also observed experimentally
by Nouar et al. [14]. Indeed, using the same fluid as
Naı̈mi et al. [13], Nouar et al. [14] analyzed the thermal
convection for Herschel–Bulkley fluids in a circular duct
with a constant heat flux density at the wall. The authors
observed that for a given flow rate, when the concentra-
tion of Carbopol increases, the yield stress increases and
the effect of the thermo-dependency of the consistency
becomes less pronounced. Once again, correlations for
the Nusselt number of the form Nu / bU�R�

k

� �t
were pro-

posed, where the exponent t was determined as 0.1, 0.13
and 0.16 for 0.3, 0.2 and 0.1 w% Carbopol, respectively.
Later, Nouar et al. [15], using the same experimental set-
up as that of Naı̈mi et al. [13], determined the critical
angular velocity Xc, for which there was no central plug
zone in the annular space. Then, the authors showed
that the increase of the exponent, t, described in [13]
was due in fact to the significant decrease of the wall
velocity gradient at the heated wall when X > Xc. Soares
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et al. [16] considered the situation of simultaneous
development of dynamic and thermal fields in a duct
with uniform wall temperature or uniform wall heat
flux. The conservation equations including axial conduc-
tion were solved numerically and the results were
presented graphically. It was demonstrated that neglect-
ing the temperature dependence of material properties
may introduce important errors in the heat transfer
coefficient.

Very few authors introduced the effect of free convec-
tion on the heat transfer coefficient. Patel and Ingham
[17,18] considered the case of fully developed mixed con-
vection of Bingham fluid in a vertical parallel plate duct
and in an eccentric annulus. Different flow configura-
tions were determined according to the ratio of the
Grashof number to the Reynolds. These results are
probably more useful for the heat transfer processes in
the flow of mud and cements in long oil wells during
drilling and cementing. To our best knowledge, the
problem of mixed convection for yield stress fluid in
the thermal entrance region of a duct, heated with uni-
form heat flux, was not studied.

1.2. Motivation of the present study and its position

with respect to the literature

For certain situations like the thermal treatment pro-
cess in food industry, the determination of the heat
transfer characteristics in the thermal entrance region
is relevant to control the quality of the products. Indeed,
for several food fluids (milk chocolate, dairy desserts,
apple sauce, orange juice concentrate, . . .) concerned
by this process, the associated Péclet number is very
large (Pe > 1000), and therefore the thermal entrance
length x�t is very large. For example, in the case of a duct,
a simple scaling analysis shows that x�t is of order
Pe · radius.

Actually, for thermo-sensitive products which can-
not bear an abrupt variation of temperature, an electri-
cal tube exchanger (from Actini) is used. It consists on
series of tubes (made of stainless steel) heated by a di-
rect passing an electrical current through the wall, so
that a uniform heat flux density is imposed. The tech-
nical details of this kind of heat exchanger can be
found in Ref. [19]. The diameter of the tube varies
between 3 · 10�2 and 4 · 10�2 m and the mean velocity
of the product is about 0.1 m/s. The Péclet number cal-
culated using the specific heat and thermal conductivity
of water is about 104, and x�t is approximately 150 m.
One has also to note that for several food fluids, the
thermo-dependency of the effective viscosity can be
significant.

In the preceding literature review [13–15], this
effect is taken into account through an empirical cor-
rection factor in the Nusselt correlations. There is no
quantitative analysis of the velocity and temperature
distribution. In addition, the effect of free convection
is not clarified.

The present paper deals with the combined forced
and free convection heat transfer of a thermo-dependent
yield stress fluid in the thermal entrance region of a hori-
zontal circular duct. It is assumed that the rheological
behavior of the fluid can be described by the Herschel–
Bulkley model. For unidirectional shear flow with velo-
city u�(y�) in the x� direction, the relationship between
the shear stress s�xy and the velocity gradient du�/dy� is:

s�xy ¼ sgnðdu�=dy�Þs�y þ K� du�

dy�

����
����
n�1

du�

dy�
() js�xy j P s�y;

ð1Þ

du�=dy� ¼ 0 () js�xy j < s�y; ð2Þ

where s�y is the yield stress, n is the flow behavior index
and K� is the consistency. This yield stress fluid model
is chosen because the results obtained here can also be
used for Newtonian fluid ðn ¼ 1; s�y ¼ 0Þ, Ostwald De
Waele fluid ðs�y ¼ 0Þ and Bingham fluid (n = 1), covering
by this way a wide range of inelastic viscous fluids. The
motivations of this work are (i) to understand and to
quantify the effect of n and s�y on the temperature and
velocity distributions. We are particularly interested in
their effect on the intensity of the secondary flows gener-
ated on one hand by the buoyancy forces and on the
other hand by the thermo-dependency of the consis-
tency; (ii) to provide expressions for the heat transfer
coefficient and the wall shear stress; (iii) to give some
characteristics on the stresses within the pseudo-plug.

The plan of the paper is as follows: The fundamental
mechanisms which control the thermal convection for
laminar flow of a yield stress fluid in a duct heated at
a constant heat flux density are described in Section 2.
The governing equations of the problem are given in
Section 3. The methodology used for solving the prob-
lem is presented in Section 4. Here, an asymptotic anal-
ysis is adopted since the Péclet number, Pe, encountered
for the fluids considered in the present study is very large
(Pe P 1000). In addition this method leads to analytical
expressions for the velocity components as well as for
the heat transfer coefficient and the wall shear stress.
The results are given and analyzed in Section 5. The
validity domain of the asymptotic solution is determined
in Section 6. Finally, a conclusion is given in Section 7.
2. Problem description

A laminar flow of an Herschel–Bulkley fluid in a cir-
cular duct of radius R� is considered. For fully devel-
oped Poiseuille flow and isothermal conditions, the
flow field comprises a plug core moving as a rigid body,
with viscoplastic shear region adjacent to the wall. The
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Fig. 1. Coordinate system and thermal boundary layer devel-
opment along the heating zone. The dashed lines at r�0 represent
the yield surface position in isothermal situation.
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ratio of the radius r�0 of the plug zone to R� depends only
on the flow behavior index, n, and the Herschel–Bulkley
number, Hb: ratio of a yield stress to a nominal viscous
stress.

When the pipe wall is heated (here, at a constant heat
flux density, U�), a thermal boundary layer develops
along the heating zone, starting from the inlet section
as it is shown in Fig. 1. A temperature profile is also
drawn to indicate that the temperature variations are
confined mainly in the thermal boundary layer.

Due to the decrease of the consistency with temper-
ature, T�, the fluid is accelerated near the heated wall
and decelerated in the central part of the duct for flow rate
conservation. This motion causes fluid particles to move
towards the heated wall (Fig. 2(a)). Simultaneously, due
to the temperature difference between the wall and the
inlet fluid, an upward flow is induced inside the thermal
boundary layer by the buoyancy forces (Fig. 2(b)). The
displacement of the secondary boundary layer induces
a downward stream outside the thermal boundary layer.
It results in a radial motion of fluid particles from the
heated wall to the core flow in the upper half of the duct,
p/2 < / < p, and from the core flow to the heated wall in
(a) (b)

Fig. 2. (a) Secondary flow due to the thermo-dependency of K�. The
heated wall. (b) Upward flow in the thermal boundary layer due to b
the lower half of the duct, 0 < / < p/2. Near the en-
trance section, the forced convection is the dominant
mechanism. The effect of K�(T�) is important close to
the inlet section, then decreases along the heating zone.
On the other hand, the buoyancy force effect increases
along the heating zone. From a dimensionless axial po-
sition denoted by Xþ

c , the buoyancy force effect becomes
dominant. The present study is restricted to the domain,
Xþ < Xþ

c , where the forced convection is the convection
dominant mechanism. As indicated in the introduction,
one of the motivations of the present work is to deter-
mine the effect of the rheological parameters on the
intensity of the secondary flows described above.
3. Governing equations

The fluid is assumed incompressible and the temper-
ature dependence of s�y and n are weak compared to the
temperature dependence of K� and thus can be ignored.
The relation K� = aexp(�bT�) is adopted. At the en-
trance of the heated region, z� = 0, the flow is fully
developed and the fluid temperature T �

e is constant and
uniform. The radius of the plug zone is denoted by r�0.
In this study, it is assumed that (i) the Péclet number,
Pe, is sufficiently large (Pe > 1000), in order to neglect
the axial diffusion [7], (ii) the viscous dissipation is very
small and can be neglected and (iii) the variation of the
fluid density with T � : q ¼ qe½1 � bðT � � T �

eÞ� is consi-
dered important only in the buoyancy force (Boussinesq
approximation). Here, b is the coefficient of thermal
expansion and qe ¼ qðT �

eÞ is the density of the fluid at
the entrance temperature.

The dimensionless governing equations are:

r � V ¼ 0; ð3Þ

½V ;t þ ðV � rÞV� ¼ �rP þ Gr

Re2
hdn þr � s; ð4Þ

h;t þ ðV � rÞh ¼ 1

Pe
Dh. ð5Þ
δt

φ

0φ =

φ π=

arrows represent the radial motion of the fluid particles to the
uoyancy forces.
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Here P is the pressure, V is the velocity and s the devi-
atoric extra-stress tensor. The velocity vector is of the
form V = uez + ver + we/, where u, v, w are the velocity
components and ez, er and e/ are unit vectors in the axial
z, radial r, and orthoradial / directions, respectively.

D ¼ o2

or2
þ 1

r
o

or
þ 1

r2

o2

o/2

� �
and n ¼ � g

g
.

In Eqs. (3)–(5), Gr, Re and Pe are the generalized Gras-
hof, Reynolds and the Péclet numbers, respectively.
They are defined by:

Re ¼ qU �2�n
d R�n

K�
e

; Gr ¼ q2
egbðU�R�=kÞR�3

K�2

e ðU �
d=R

�Þ2ðn�1Þ ;

Pe ¼ qCpU �
dR

�

k
;

where Cp is the specific heat. The governing equations
are rendered dimensionless by using the following scales:

z ¼ z�

R� ; r ¼ r�

R� ; u ¼ u�

U �
d

; v ¼ v�

U �
d

; w ¼ w�

U �
d

;

h ¼ ðT � � T �
eÞk

U�R�d
; P ¼ P �

qeU
�2
d

; sij ¼
s�ij

qeU
�2
d

; K ¼ K�

K�
e

;

where U �
d is the bulk velocity, k is the thermal conductiv-

ity, K�
e is the fluid consistency evaluated at the entrance

temperature and dR� is characteristic scale of the ther-
mal boundary layer. Writing a balance between the axial
convection and normal conduction terms of the energy
equation, we obtain d = Pe�1/3.

Using the Von-Mises criterion, the scaled constitutive
laws for the fluid are

s ¼ 2

Re
laD () ðsIIÞ1=2

>
Hb
Re

; ð6Þ

D ¼ 0 () ðsIIÞ1=2
6
Hb
Re

; ð7Þ

with

la ¼
Hb

ð4DIIÞ1=2
þ expð�PndhÞð4DIIÞðn�1Þ=2

; ð8Þ

where the Pearson number, Pn, the Herschel–Bulkley
number, Hb, and the second invariants DII and sII of
the deformation rate and deviatoric stress tensors are
defined by:

Pn ¼ bU�R�

k
; Hb ¼

s�yR
�n

K�
eU

�n
d

; DII ¼
1

2
DijDij

� �
;

sII ¼
1

2
ðsijsijÞ;

where Dij = (1/2)(ui,j + uj,i). The dimensionless number,
Pn, traduces the thermo-dependency of the effective vis-
cosity. Far from the entrance section, Pn represents the
relative variation of the consistency between the wall
and the axis. Concerning the boundary conditions: (i)
At the entrance section, z = 0, the flow is fully developed
with a uniform temperature, h = 0; (ii) on the wall a
non-slip condition is considered and a constant heat flux
density is applied; (iii) at the yield surface (surface where
ðs�IIÞ

1=2 ¼ s�y), the velocity and stress are continuous.
For one-dimensional shear flow, the axial velocity

profile is given by [3,14]:

u¼

n
nþ 1

Hb
r0

� �1
n

ð1� r0Þ
nþ1
n ; 0 6 r 6 r0;

n
nþ 1

Hb
r0

� �1
n

ð1� r0Þ
nþ1
n � ðr� r0Þ

nþ1
n

h i
; r0 6 r 6 1.

8>>>><
>>>>:

ð9Þ
The dimensionless axial velocity gradient at the wall
(r = 1), denoted by u = (du/dr)r=1, has an important role
in the analysis of the heat transfer results. It is given by:

u ¼ Hbð1 � r0Þ
r0

� �1=n

. ð10Þ

It can also be written as u = Punew, where unew is the
dimensionless axial velocity gradient at r = 1 for Newto-
nian fluid (unew = 4 for a circular duct). Hence, P repre-
sents the modification of the wall shear rate by the
rheological behavior of the fluid in isothermal situation.

Since the bulk velocity is used to scale the flow, it fol-
lows that:

2

Z 1

0

r uðrÞdr ¼ 1. ð11Þ

Using Eq. (9), it can be shown after some algebra that r0

satisfies the following relation:

0 ¼ ð1 � r0Þ3þm � ð3 þ mÞð1 � r0Þ2þm

þ ð2 þ mÞð3 þ mÞ
2

ð1 � r0Þ1þm

� ð3 þ mÞð2 þ mÞð1 þ mÞ
2

r0

Hb

� �m
; ð12Þ

where m = 1/n. For low and large Hb, the following
asymptotic expressions are derived:

As Hb ! 0

r0 ¼
n

3nþ 1

� �n

Hb� n
2nþ 1

n
3nþ 1

� �2n�1

Hb2 þ OðHb3Þ.

ð13Þ

As Hb !1

r0 ¼ 1 � C1
1

Hb

� � 1
1þn

� C2
1

Hb

� � 2
1þn

þ O
1

Hb

� � 3
1þn

 !
;

ð14Þ

with

C1 ¼
1 þ n
n

� � n
1þn

and C2 ¼
2n2

ð1 þ nÞð2nþ 1ÞC
2
1 � C

n�1
n

1 .
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Fig. 3. Dimensionless radius of the plug zone as function of
Hb. (1) n = 1; (2) n = 0.5 ; (3) n = 0.1. The dashed line show
expansion to r0(Hb) valid for small Hb.
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Fig. 3 shows the asymptotic expressions r0(Hb) for
Hb < 1, plotted against the numerical solution of Eq.
(12) for three values of n. It is observed that the limit
of validity of Eq. (13) decreases with increasing the shear
thinning of the fluid.
4. Asymptotic analysis

An asymptotic analysis was previously used by
Nouar et al. [20] to study the laminar mixed convection
for power law fluids in the thermal entrance region of an
annular duct. The results obtained by this method were
in good agreement with the experimental ones (e.g. see
Fig. 16 in Ref. [20]). Encouraged by this, the procedure
is extended here to the Herschel–Bulkley fluids.

For Pe !1, the temperature variations are confined
to a thin region (thermal boundary layer) adjacent to the
wall. Thus it is possible to resort to an asymptotic
solution. Two regions are then distinguished: the inter-
nal region (thermal boundary layer) and the external
region which contains the pseudo-plug zone. The
characteristic scale of the internal region which satisfies
the least degeneracy principle [21,22] is d = Pe�1/3. The
solution can then be written as an expansion into series
in d.

• At the leading order in d, we have h � 0 in the exter-
nal zone. In other words, the external zone ‘‘does not
see’’ the wall heating and the temperature variations
are confined only in the internal zone.
– If the rheological parameters and the thermo-

physical properties are independent of the
temperature, i.e., Gr = Pn = 0, the temperature
distribution in the internal zone is given by the
Lévêque solution (Eq. (33)). The velocity field as
well as the axial pressure gradient are the same
as those at the entrance section, z = 0. Indeed, if
Gr = Pn = 0, the flow field will be not modified
along all the heating zone since it is assumed fully
developed at z = 0.

– When the density and the consistency are thermo-
dependent, we still have h � 0 in the external zone.
As indicated above, at the leading order in d, the
external zone ‘‘does not see’’ any effect of the heat-
ing wall. The velocity field is not disturbed and is
identical to that at the inlet. In the internal zone,
the temperature variation will generate secondary
flows. Near the entrance section, the thermal
boundary layer is very thin and the intensity, I,
of these secondary flows is weak. Formally, I

can be written as a function of two small para-
meters e1 and e2, defined later in the analysis, which
represent the thermo-dependency effect of K�(T�)
and q(T�) respectively. The velocity field corre-
sponding to the secondary flows can be first calcu-
lated using the temperature distribution evaluated
in the situation Gr = Pn = 0, and then improved,
taking into account the modification of the tem-
perature distribution by these secondary flows.
• At the first order in d, the calculations are too com-
plex, and only qualitative results are provided for
the external zone. It is shown that we still have
h � 0, and the modification of the velocity field is
induced by the secondary flows developed in the
internal zone.

The above analysis summarizes the asymptotic devel-
opments performed in this section.

Zeroth order in the external region: In the external re-
gion, the flow solution is obtained by expanding the
dependent variables into series in d

uext � uext
0 þ duext

1 þ � � � ; ð15Þ
vext � vext

0 þ dvext
1 þ � � � ; ð16Þ

wext � wext
0 þ dwext

1 þ � � � ; ð17Þ
P ext � P ext

0 þ dP ext
1 þ � � � ; ð18Þ

hext � hext
0 þ dhext

1 þ � � � ; ð19Þ

where uext
1 ; vext

1 ;wext
1 ; P ext

1 and hext
1 are function of the two

parameters e1 and e2 as explained above.
By substituting (15)–(19) into the full problem (3)–(5)

and taking the limit as Pe !1 the equations corre-
sponding to the zeroth order solution uext

0 ; vext
0 ;wext

0 ; P ext
0

and hext
0 are derived. The solution which satisfy the fully

developed axial velocity profile and uniform tempera-
ture at the inlet are just these undisturbed inlet
conditions.

hext
0 ¼ 0; vext

0 ¼ 0;
oP ext

0

or
¼ 0; wext

0 ¼ 0; ð20Þ
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uext
0 ¼ U fdðrÞ;

oP ext
0

oz
¼ dP

dz

� �
fd

. ð21Þ

The subscript ‘‘fd’’ means fully developed flow.
Zeroth order boundary layer: Near the pipe wall, the

heat conduction normal to the wall becomes important.
The radial co-ordinate r is stretched to reflect this phys-
ical fact. Accordingly and as in classical boundary layer,
the following inner variables are introduced:

r ¼ 1 � d�r; u ¼ dû; v ¼ �d2v̂; w ¼ dŵ. ð22Þ

The variation of the consistency K� with the temperature
is expanded using a Taylor series at the reference tem-
perature T �

e .

K� ¼ K�
e 1 � e2h þ e2

2

2
h2 þ O e3

2

� �� �
¼ K�

eK;

with

e2 ¼
bU�R�

kPe1=3
¼ Pn
Pe1=3

.

In the thermal entrance region, the parameter e2 is more
relevant than Pn to account for the thermo-dependency
of K. Indeed, it can be shown that e2 is the characteristic
scale of the relative variation of the consistency between
the wall and the edge of the thermal boundary layer:
ðK�

e � K�
wÞ=K�

e ¼ Oðe2Þ.
Expressions (22) are combined with the governing

equations (3)–(5) and the solution is expanded into series
in d. Finally, after retaining the leading order terms, that
is the zeroth order solution, we obtain:

ov̂
o�r

þ oŵ
o/

þ oû
oz

¼ 0; ð23Þ

1

Pr
v̂
oŵ
o�r

þ ŵ
oŵ
o/

þ û
oŵ
oz

� �
¼ e1h sin / þ o

o�r
la0

oŵ
o�r

� �
; ð24Þ

1

Pr
v̂
oû
o�r

þ ŵ
oû
o/

þ û
oû
oz

� �
¼ o

o�r
la0

oû
o�r

� �
; ð25Þ

v̂
oh
o�r

þ ŵ
oh
o/

þ û
oh
oz

¼ o
2h
o�r2

; ð26Þ

where

Pr ¼ K�
eðU �

dÞ
n�1Cp

ðR�Þn�1k
; la0 ¼

Hb

ð4DII0Þ1=2
þ Kð4DII0Þðn�1Þ=2;

DII0 ¼
1

4

oû
o�r

� �2

þ oŵ
�r

� �2
" #

and e1 ¼
Gr

RePe2=3
.

Pr is the generalized Prandtl number and la0 is the
apparent viscosity at the zeroth order in d. The perturba-
tion parameter e1 is the characteristic scale of the ratio of
the azimuthal velocity to the axial velocity inside the
thermal boundary layer: w/u = O(e1).

It is clear that e1 and e2 are two regular perturbation
parameters. The solution is obtained using double series
in e1 and e2:

A � A00 þ e1A10 þ e2A01 þ e1e2A11 þ e2
1A20 þ e2

2A02 þ . . . ;

ð27Þ

where A stands for û; v̂; ŵ and h. The product e1e2

traduces the modification of the azimuthal velocity by
the thermo-dependency of K: ŵth � ŵnth ¼ Oðe1e2Þ.
The subscripts th and nth mean thermo-dependent and
non-thermo-dependent respectively. In the following
analysis, it is necessary to introduce a hierarchy between
e1 and e2. For this, it is assumed that there is a parameter
1 > 0 such that e1 = (e2)

1. Three cases can be considered:
1 > 1, 1 < 1 and 1 = 1, depending on whether the effect of
K�(T�) is more important, or less important or of the
same order as that of q(T�). Based on the different rhe-
ological tests performed in our laboratory [14], only the
situation where 1 > 1 (e1 < e2) is considered. However,
for 1 P 2, the product e1e2 6 e3

2 and e1 6 e2
2. Here, the

study is restricted to the case where 1 < 1 < 2. Homoge-
neous solutions are then determined [23] leading to the
following relations:

û � ðazÞ1=3gPunew þ e1ðazÞ2H 0
10 cos / þ e2ðazÞ2=3H 0

01

þ e2
2ðazÞH 0

02 þ e1e2ðazÞ7=3H 0
11 cos / þ � � � ; ð28Þ

v̂ � e1ðazÞ4=3W10 cos / þ e2W01 þ e2
2ðazÞ

2=3W02

þ e1e2ðazÞ5=3W11 cos / þ � � � ; ð29Þ

ŵ � e1ðazÞF 0
10 sin / þ e1e2ðazÞ4=3F 0

11 sin / þ � � � ; ð30Þ

h � ðazÞ1=3G00 þ e1ðazÞ2G10 cos / þ e2ðazÞ2=3G01

þ e2
2ðazÞG02 þ e1e2ðazÞ7=3G11 cos / þ � � � ; ð31Þ

The functions Hij, Wij, Fij and Gij (i, j = 0,1) depend only
on g : g ¼ �r=ðazÞ1=3 and a = 9/(Punew). They traduce the
distribution of the velocity and the temperature inside
the thermal boundary layer. One can observe that
û; v̂; ŵ and h depend not only on the similarity variable
g, but also on the axial position because the wall temper-
ature varies along the heating zone, as a uniform heat
flux is imposed. Substituting expressions (28)–(31) into
Eqs. (23)–(26) and collecting the terms of zero order,
which correspond to the situation of forced convection
with K = const., we obtain:

G00
00 þ 3g2G0

00 � 3gG00 ¼ 0. ð32Þ

The boundary conditions are

G0
00 ¼ �1 at g ¼ 0; G00 ! 0 as g ! 1.
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The solution is given by

G00ðgÞ ¼
2

3Cð5=3Þ e�g3

� g 1 � 2

Cð5=3Þ

Z g

0

ne�n3

dn

� �
. ð33Þ

Eq. (33) represents the temperature profile in the ther-
mal boundary layer, in the situation of constant physical
properties, linear velocity profile and no curvature effect.
It is known in the literature as the Lévêque solution [24].
The value of G00 at the wall is useful and is given by
G00(0) = 0.738488.

The terms of order e1, which correspond to the per-
turbation of forced convection solution by the buoyancy
force with K = const., lead to:

un�1

1 � r0

F 000
10 þ

3

Pr
½g2F 00

10 � 3gF 0
10� ¼ �G00; ð34Þ

nun�1H 000
10 þ

3

Pr
½g2H 00

10 � 7gH 0
10 þ 7H 10� ¼ � 9

aPr
F 10;

ð35Þ

G00
10 þ 3g2G0

10 � 18gG10 ¼ W10G
0
00 þ

a
3
H 0

10ðG00 � gG0
00Þ

h i
;

ð36Þ

W10ðgÞ ¼
a
3

gH 0
10ðgÞ �

7a
3
H 10ðgÞ � F 10. ð37Þ

The terms of order e2 correspond to the perturbation of
forced convection by the thermo-dependency of K:

nun�1H 000
01 þ

3

Pr
½g2H 00

01 � 3gH 0
01 þ 3H 01� ¼

9

a
un�1G0

00;

ð38Þ

G00
01 þ 3g2G0

01 � 6gG01 ¼
a
3
½H 0

01G00 � 3H 01G
0
00�; ð39Þ

W01 ¼
a
3
ðgH 0

01 � 3H 01Þ. ð40Þ

The terms of order e2
2 represent a perturbation of second

order of forced convection solution by the thermo-
dependency of K, with q = const. We have:

nun�1H 000
02 þ

3

Pr
½g2H 00

02 � 4gH 0
02 þ 4H 02�

¼ � 9

a
un�1½G00G

0
00 � G0

01� þ nun�1½G0
00H

00
01 þ G00H 000

01�

þ a
3Pr

½2H 02
01 � 3H 01H 00

01� þ
2Hb
u2

H 00
01H

000
01

� 2
n� 1

u
un�1H 00

01H
000
01; ð41Þ

G00
02 þ 3g2G0

02 � 9gG02 ¼
a
3
½H 0

02G00 � 4H 02G
0
00�; ð42Þ

W02 ¼
a
3
ðgH 0

02 � 4H 02Þ. ð43Þ
From the terms of order e1e2 which correspond to mixed
convection with thermo-dependent consistency, we
have:

nun�1H 000
11 þ

3

Pr
½g2H 00

11 � 8gH 0
11 þ 8H 11�

¼ 9

a
un�1G0

10 þ nun�1 d

dg
ðG00H 00

10Þ

þ 1

Pr
W10H 00

01 �
ag
3
H 0

10H
00
01 þ W01H 00

10 �
ag
3
H 0

01H
00
10

h i
þ 1

Pr
8a
3
H 0

01H
0
10 �

9

a
F 11

� �
þ a2

27
Hb

d

dg
½H 00

01H
00
10�

� 3
n� 1

u
un�1 d

dg
½H 00

10H
00
01�; ð44Þ

un�1

1 � r0

F 000
11 þ

3

Pr
½g2F 00

11 � 4gF 0
11�

¼ �G01 þ
a
Pr

½H 0
01F

0
10 � H 01F 00

10�

þ a
9

r0

1 � r0

d

dg
ðF 00

10H
00
01Þ þ un�1 d

dg
ðG00F 00

10Þ; ð45Þ

G00
11 þ 3g2G0

11 � 21gG11

¼ ½W10G
0
01 þ W01G

0
10 þ W11G

0
00� þ

a
3
½H 0

01ð6G10 � gG0
10Þ

þ H 0
10ð2G01 � gG0

01Þ� þ
a
3
H 0

11½G00 � gG0
00�; ð46Þ

W11 ¼ �F 11 þ
a
3
ðgH 0

11 � 8H 11Þ. ð47Þ

With the following boundary conditions:

F 10 ¼ F 0
10 ¼ H 10 ¼ H 0

10 ¼ G0
10 ¼ 0 at g ¼ 0;

F 0
10 ¼ G10 ¼ H 00

10 ! 0 as g ! 1;

�
H 01 ¼ H 0

01 ¼ G0
01 ¼ 0 at g ¼ 0;

H 00
01 ¼ G01 ! 0 as g ! 1;

�
H 02 ¼ H 0

02 ¼ G0
02 ¼ 0 at g ¼ 0;

H 00
02 ¼ G02 ! 0 as g ! 1;

�
F 0

11 ¼ H 0
11 ¼ G0

11 ¼ 0 at g ¼ 0;

F 0
11 ¼ H 00

11 ¼ G11 ! 0 as g ! 1.

�

The set of ordinary differential equations (34)–(47)
are integrated numerically using a fourth order
Runge–Kutta method with shooting.

First order core flow: Substituting expressions (15)–
(19) into the dimensionless governing equations, we
obtain:

1

r
o

or
ðrvext

1 Þ þ 1

r
owext

1

o/
þ ouext

1

oz
¼ 0; ð48Þ

uext
0

ovext
1

oz
¼ � oP ext

1

or
� e1h

ext
1 cosð/Þ þ Ar; ð49Þ

uext
0

owext
1

oz
¼ � 1

r
oP ext

1

o/
þ e1h

ext
1 sinð/Þ þ A/; ð50Þ
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vext
1

duext
0

dr
þ uext

0

ouext
1

oz
¼ � oP ext

1

oz
þ Az; ð51Þ

ohext
1

oz
¼ 0; ð52Þ

where Ar, A/ and Az are the first order terms in an
expansion of the radial, azimuthal and axial component
respectively of r � ½sðuext

0 þ duext
1 Þ � sðuext

0 Þ�. Using Eqs.
(6), (8), (15)–(17) and (19)–(21), Ar, A/ and Az may be
recast in terms of gradients of velocity components.
For instance, we have:

A/ ¼ 1

Re
lext

a0 Dwext
1 þ 2

r2

ovext
1

o/
� wext

1

r2

� �

þ 1

Re
d

dr
ðlext

a0 Þ
1

r
ovext

1

o/
þ owext

1

or
� wext

1

r

� �
;

where

lext
a0 ¼ Hb

jduext
0 =drj þ

duext
0

dr

����
����
n�1

.

The solution of Eq. (52) is hext
1 ¼ 0. The temperature

of the external zone, up to this order, is still not changed
and is equal to the inlet temperature. Therefore, there is
no buoyancy force acting on the fluid in the external
zone. Eqs. (49) and (50) can then be simplified in this
sense. Actually, Eqs. (48)–(51) traduce the deceleration
of the axial flow due to the motion of the fluid particles
towards the heated wall, and the downward cold stream
due to the displacement effect of the dynamical bound-
ary layer associated to the secondary flow induced by
the buoyancy force in the thermal boundary layer. With-
in the overlap zone between the internal and external re-
gions, the corresponding solutions should ‘‘match’’, in
accordance with the requirement of the method of singu-
lar perturbation [21]. For example, in the situation of
forced convection with K�(T�), we have

lim
r!1

uext
1 ¼ d lim

g!1
û ¼ d½e2ðazÞ2=3a1 þ � � ��;

where a1 ¼ lim
g!1

H 0
01. ð53Þ

Similar equations can be derived for vext
1 and wext

1 . Final-
ly, the solution of Eqs. (48)–(51) are written in the form:

uext
1 � e1uext

11 cosð/Þ þ e2uext
12 þ e2

2u
ext
13 þ e1e2uext

14 cosð/Þ;
ð54Þ

vext
1 � e1vext

11 cosð/Þ þ e2vext
12 þ e2

2v
ext
13 þ e1e2vext

14 cosð/Þ;
ð55Þ

wext
1 � e1wext

11 sinð/Þ þ e1e2wext
14 sinð/Þ; ð56Þ

P ext
1 � e1P ext

11 cosð/Þ þ e2P ext
12 þ e2

2P
ext
13 þ e1e2P ext

14 cosð/Þ.
ð57Þ
5. Results and discussion

5.1. Forced convection with thermo-dependent

consistency

As explained before, the decrease of the consistency
K� with increasing T� induces a radial motion of fluid
particles towards the heated wall. The axial flow is accel-
erated in the thermal boundary layer. At the first order
in e2, the redistribution of the velocities and tempera-
tures is governed by Eqs. (38)–(40). It is important to
note that this redistribution depends only on the Prandtl
number, the flow behavior index and on the dimension-
less wall shear rate, u. The numerical results for the
functions G00;H 0

01;W01 and G01 are plotted respectively
in Fig. 4(a)–(d) for n = 1, Pr = 200 and five values of
r0: 0, 0.2, 0.4, 0.6 and 0.8. For a fixed value of r0, the ef-
fect of the flow behavior index, n, on the flow reorgani-
zation and temperature modification is represented in
Fig. 5.

Remark. Fig. 4(c) and (d) shows that for a large Prandtl
number, the dimension of the plug zone has no
significant effect on W01(g) and G01(g).

Concerning the physical meaning of the functions
H 0

01;W01 and G01, they represent, for a given axial posi-
tion, the increase of the axial velocity, the radial motion
of the fluid particles and the decrease of the temperature
inside the internal region, respectively.

Using the first order term in e2 in Eq. (29), the radial
velocity of the fluid particles inside the thermal bound-
ary layer is v � �d2e2W01. The intensity of this secondary
flow can be represented by v calculated at g ¼ g0 ¼
jG0

00ð0Þ � G00ð0Þj:

vðg0Þ � � Pn
Pe

W01ðg0Þ. ð58Þ

Finally, for 0 6 r0 6 0.8, 0.4 6 n 6 1, the numerical re-
sults show that W01(g0) can be described by �0.53/n with
a relative error less than 4%, when Pr P 100. Then, in
this case, one can write:

vðg0Þ �
0.53

n
Pn
Pe

. ð59Þ

The intensity of the secondary flow increases with the
shear thinning of the fluid (Fig. 5(a)).

Concerning the acceleration of the axial flow, the
asymptotic solution gives:

oû
oz

� e2

a

3ðazÞ1=3
½2H 0

01 � gH 00
01� þ � � � ð60Þ

Thus, the flow is quickly accelerated near the entrance,
then, the acceleration declines downstream as (az)�1/3.
The modification of the wall axial velocity gradient
along the heated zone can be characterized by the ratio
P 0 as:
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P0 ¼
j ou=orjr¼1;z

j ou=orjr¼1;z¼0

.

Near the entrance section and for a large Prandtl num-
ber, we have:

P0 � 1 þ Pn
n

9Xþ

Punew

� �1=3

G00ð0Þ þ � � � ð61Þ

The above equation shows clearly that for a yield stress
fluid, the increase of the wall axial velocity gradient, due
to the decrease of K near the heated wall, is less impor-
tant when P and then Hb is high. The shear thinning
(n 6 1), effect is more complex, since on one hand it con-
tributes to increase the wall shear rate, i.e. P, and on the
other hand, it enhances the thermo-dependency phe-
nomenon through the term Pn/n. However, calculations
performed for 0.3 6 n 6 1 show that nP1/3

6 1 and P 0

increases with the shear thinning.
As far as the local axial shear stress is concerned, it is

given by

s�rz ¼ sgn
ou�

or�

� �
s�y þ K� ou�

or�

����
����
n�1

ou�

or�
. ð62Þ

The (K(h)) variation effect on the axial shear stress at the
wall can be illustrated by the ratio:
s�rz;th
s�rz;nth

� 1 � e2ð1 � r0ÞðazÞ1=3 G00 �
nH 00

01

u

� �
� e2

2ð1 � r0Þ

� ðazÞ2=3 G2
00

2
þ G00

nH 00
01

u
� G00

� �
þ G01 �

nH 00
02

u

� �
.

ð63Þ
In Eq. (63), the different functions are evaluated at
g = 0. For a large Prandtl number, using Eqs. (38) and
(41), the relation (63) can be reduced to:

s�rz;th
s�rz;nth

� 1 þ Pn
n

� �2
9Xþ

Punew

� �2=3

G2
00ð0Þð1 � nð1 � r0ÞÞ.

ð64Þ

The modification of the axial shear stress due to K(h)
variation is of second order in e2.

Concerning the heat transfer coefficient, the Nusselt
number is defined by Nu = [d · h(g = 0)]�1. The asymp-
totic solution leads to:

Nuth

Nunth

� G00ð0Þ
G00ð0Þ þ e2 azð Þ1=3G01ð0Þ

. ð65Þ
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For large Pr, the previous relation may be reduced to:

Nuth

Nunth

� 1 � Pn
n
G01ð0Þnew

G00ð0Þ
9Xþ

Punew t

� �1=3

; ð66Þ

with G01(0)new = �0.123 and Nunth ¼ 1
G00ð0Þ

ð 9Xþ

Punew
Þ�1=3.

The relation (66) shows that the Nusselt number in-
creases with Pn and this increase is more significant
when the fluid is shear thinning or the wall shear rate
is low. This result is consistent with the experimental
data given by Naı̈mi et al. [13] and Nouar et al. [15].

As far as the flow in the external zone is concerned,
we follow the procedure described by Walton and Bittle-
ston [25] then Balmforth and Craster [26] and Frigaard
and Ryan [27]. Outside the pseudo-yield surface, using
the expansion into series (15)–(17), the components of
the rate-of-strain tensor take the form

Dext
zz � dDext

zz1 þ � � � ; Dext
rr � dDext

rr1 þ � � � ;
Dext
rz � Dext

rz0 þ dDext
rz1 þ � � � ð67Þ

and

Dext
II � jDext

rz0j þ dDext
II1 þ � � � ; ð68Þ
where

Dext
zz1 ¼

ouext
1

oz
; Dext

rr1 ¼
ovext

1

or
; Dext

rz0 ¼
1

2

duext
0

dr
;

Dext
rz1 ¼

1

2

ouext
1

or
þ ovext

1

oz

� �
. ð69Þ

It follows that the stresses take the form

sext
rr � dsext

rr1 þ � � � ; sext
zz � dsext

zz1 þ � � � ;
sext
rz � sext

rz0 þ dsext
rz1 þ � � � ; ð70Þ

where

sext
zz1 ¼

2

Re
Hb

2jDrz0j
þ ð2jDrz0jÞn�1

� �
Dext
zz1;

sext
rr1 ¼

2

Re
Hb

2jDrz0j
þ ð2jDrz0jÞn�1

� �
Dext
rr1;

srz0 ¼ �Hb
Re

r
r0

; sext
rz1 ¼

2

Re
Hb

2jDrz0j
þ ð2jDrz0jÞn�1

� �
Dext
rz1.

ð71Þ

It is clear that sext
zz1 and sext

rr1 diverge at the pseudo-yield
surface where Dext

rz0 ¼ 0. As explained by Balmforth and
Craster [26], this divergence is due to the fact that the
asymptotic expansion of the constitutive equation is
not uniform.

In the pseudo-plug region, the velocity components
may be expanded as:

upp � upp
0 þ dupp

1 þ � � � and vpp � dvpp
1 þ � � � ð72Þ

then

Dpp
zz � d

oupp
1

oz
þ � � � ; Dpp

rr � d
ovpp

1

or
;

Dpp
rz � 1

2
d

oupp
1

or
þ ovpp

1

oz

� �
þ � � � ð73Þ

The superscript ‘‘pp’’ means pseudo-plug. Combining
the above relations, the second invariant of the strain-
rate tensor can be written as Dpp

II � dDpp
II1 þ � � �. Concern-

ing the stresses, we have at the leading order:

spp
zz0 ¼

2

Re
Hb
Dpp

II1

� �
oupp

1

oz
; spp

rr0 ¼
2

Re
Hb
Dpp

II1

� �
ovpp

1

or
; ð74Þ

spp
rz0 ¼

1

Re
Hb
Dpp

II1

� �
oupp

1

or
þ ovpp

1

oz

� �
and

spp
II ¼ Hb

Re

� �2

þ � � � ð75Þ

Thus, within the pseudo-plug, the stress exceeds the yield
stress. The relation sext

rz0 ¼ �ðHb=ReÞðr=r0Þ is also satis-
fied within the pseudo-plug: spp

rz0 ¼ �ðHb=ReÞðr=r0Þ.
Therefore spp

zz0 7!0 and srr0 #0 as r # r0. Along the axis,
we have spp

rz0 ¼ 0 and ðspp
rr0Þ

2 ¼ ðspp
zz0Þ

2 ¼ ðHb=ReÞ2.



C. Nouar / International Journal of Heat and Mass Transfer 48 (2005) 5520–5535 5531
5.2. Mixed convection with constant consistency

Due to the decrease of the density with temperature,
the warmer fluid moves upward along the heated wall
and the cooler fluid moves downward in the external
zone. This secondary flow is described by the azimuthal
velocity w � de1azF 0

10 sin /. The numerical results of F 0
10

are shown in Figs. 6(a) and 7(a). The intensity Iw of the
secondary flow is represented by wmax � de1azðF 0

10Þmax.
The effect of the rheological properties on Iw can be
characterized by the ratio wmax/wnew,max. Using the
asymptotic expansions (28)–(31):

wmax

wnew;max

� ð1 � r0Þ
unew

Pnun
new

. ð76Þ

Comparatively to the Newtonian fluid, the intensity of
the secondary flow is reduced because on one hand,
the wall shear rate is higher, since (P > 1) and on the
other hand, the zone of shear flow is reduced by a factor
of (1 � r0). For low Hb, the above relation can be writ-
ten as:

wmax

wnew;max

�unew

n
3nþ1

� �n

1� n
2nþ1

� �
n

3nþ1

� �n�1

Hb

" #
;

ð77Þ
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Fig. 6. Functions: (a) F 0
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r0 = 0.6; (5) r0 = 0.8.
with

wnew;max � e1ðazÞ F 0
10

� �
new;max

and

ðF 0
10Þnew;max � 8.22 � 10�2. ð78Þ

The upward flow near the heated wall (Fig. 2(b)) and the
downward flow outside the thermal boundary layer in-
duce a radial motion of the fluid particles. They enter
the thermal boundary layer at the lower half of the duct,
0 < / < p/2, and leave it at the upper half, p/2 < / < p.
The asymptotic solution shows that:

v � �Gr
Re

az
Pe

� �4=3

W10 cos /. ð79Þ

The function W10 represents the profile of v in the inter-
nal zone. As expected, v decreases with increasing r0

(Fig. 6(c)). For Pr � 1, the relation (79) can be rewritten
as

v � �Gr
Re

9Xþ

u

� �4=3 ð1 � r0Þ
un�1

W10;new cos /. ð80Þ

The axial flow is accelerated in the lower part of the duct
as (de1a

2z) and decelerated with the same rate in the
upper part. The modification of the axial velocity in
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the thermal boundary layer is represented by H 0
10, shown

in Fig. 6(b) for different r0.
As far as the axial and azimuthal wall shear stresses

are concerned, they are given by:

s�rz ¼
s�y

2D�
II

þ K� 2D�
II

� �n�1
� �

ou�

or�

� �
;

s�r/ ¼
s�y

2D�
II

þ K�ð2D�
IIÞ

n�1

� �
ow�

or�

� �
: ð81Þ

Using the series expansion, it can be shown that the
secondary flow effect on the wall shear stress can be
described by:

s�rz
s�rz;fc

� 1 þ e1ðazÞ5=3 H
00
10ð0Þ cosð/Þ

u
; ð82Þ

s�r/ � e1K�
e

U �
d

R�

� �n

ðazÞ2=3 Hb
u

þ un�1

� �
F 00

10ð0Þ sinð/Þ.

ð83Þ
For Pr � 1, the above relation reduces to:

s�r/
K�

eðU �
d=R

�Þn �
Gr
Re

9Xþ

u

� �2=3

F 00
10;newð0Þ sinð/Þ; ð84Þ

with F 00
10;newð0Þ � 0.182.

The upward flow of the warmer fluid near the heated
wall and the downward flow of the cooler fluid outside
the thermal boundary layer leads progressively to the
appearance of a low density fluid layer with a higher
temperature at the upper part of the duct. The colder
fluid is confined in the lower part. The modification of
the temperature profile is described by G10(g). The effect
of r0 and n on G10(g) are shown in Figs. 6(d) and 7(b).
The temperature difference ½h�tb between the top and
the bottom of the duct is:

½h�tb � 2RaPe1=3 9Xþ

Punewt

� �2

jG10ð0Þj. ð85Þ

For a large Prandtl number, the numerical results pre-
sented in Fig. 6(d) and the asymptotic expansions indi-
cate that the following approximation can be used:
jG10(0)j � [(1�r0)/u

n�1]jG10(0)newj, with G10(0)new =
� 1.75 · 10�3. This result can also be written in the form:

½h�tb
½h�tb;new

� 1 � r0

P2un�1
. ð86Þ

Once again, the effect of Hb on the temperature differ-
ence appears implicitly through the terms (1�r0) and P.

The stratification of the thermal field induced by the
upward flow of the warmer fluid induces an enhance-
ment of the heat transfer in the bottom and a deteriora-
tion in the top. The asymptotic solution predicts the
following relations:

Nu
Nufc

� 1

1 þ e1ðazÞ5=3½G10ð0Þ=G00ð0Þ� cos ð/Þ
. ð87Þ

For Pr � 1

Nu
Nufc

� 1 � Ra
ð1 � r0Þ

un�1

9Xþ

Punew

� �5=3 G10;newð0Þ
G00ð0Þ

cosð/Þ;

ð88Þ

where Ra is the Rayleigh number: Ra = Gr · Pr.
Concerning the stresses within the pseudo-plug zone,

similarly to the situation of forced convection with ther-
mo-dependent consistency, it is shown that the stresses
exceed the yield stress: spp

II � ðHb=ReÞ2 þ � � � In additions
the (i, j)-components of the deviatoric stress tensor,
(i, j) 5 (r,z), or (z, r), tend to zero as the pseudo-yield
surface is approached.

5.3. Mixed convection with thermo-dependent consistency

K� = K(T�)

The decrease of K with increasing h, on one hand
reduces the drag forces of viscous origin, thereby
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increasing the intensity of the secondary flow, and on the
other hand increases the wall axial velocity gradient,
which in turn decreases the thermal boundary layer
thickness and therefore shifts the radial position of the
maximum of the tangential velocity towards the wall.
The modification of the tangential velocity profile by
the thermo-dependency of K is shown in Fig. 8(a) for
different r0. The asymptotic solution indicates that:

wmax;th � wmax;nth � e1e2

Pe1=3
ðazÞ4=3F 0

11ðgwmaxÞ ð89Þ

and

rðwmax;thÞ � rðwmax;nthÞ �
e2

Pe1=3
ðazÞ2=3G01ð0Þ. ð90Þ

The temperature difference ½hth�tb increases slightly as the
numerical results of G11 in Fig. 8(d). As expected, with
increasing r0 or Hb, the temperature difference ½hth�tb re-
duces. The asymptotic solution gives

½hth�tb � ½hnth�hb � �2e1e2ðazÞ2=3G11ð0Þ. ð91Þ

Concerning the modification of the axial velocity, the
combined effects of thermal stratification and the de-
crease of K�(T�) tend to accelerate the fluid at the upper
part of the duct as it is shown by the negative values of
H 0

11ðgÞ in Fig. 8(b). Finally the thermal stratification
combined with the decrease of K�(T�) tend to induce a
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1

radial motion of the fluid particles towards the wall at
the upper part and to the core flow at the lower part
of the duct (Fig. 8(c)).

6. Validity domain of the asymptotic solution

The asymptotic solution developed in this paper as-
sumes that the forced convection is the dominant mech-
anism in the heat transfer and the natural convection is
taken into account through a regular perturbation
parameter. However, the intensity of the secondary flow
induced by the buoyancy forces increases along the heat-
ing zone and the thermal stratification becomes more
significant. From an axial position denoted Xþ

c , the nat-
ural convection becomes the dominant convection
mechanism and the asymptotic solution is no more
valid. According to Bejan [28], the type of convection
mechanism is decided by the smaller of the two scales
of thermal boundary layer: dt,fc (pure forced convection)
and dt,nc (pure natural convection).

In the situation of pure forced convection and a large
Prandtl number, Pr � 1, using the energy equation, it
can be shown that

dt;fc ¼ O
Xþ

PunewP0

� �1=3
" #

. ð92Þ
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As it is indicated, the K(h) variation affects the velocity
distribution along the heating zone. However, in the
thermal entrance region and for a large Prandtl number,
the mechanical relaxation length is not significant, com-
pared with the thermal relaxation length, that is the local
velocity field adjusts almost instantaneously to the local
temperature. Therefore, the temperature variation are
small everywhere, except in a very thin thermal bound-
ary layer. As a result, viscosity variations are not suffi-
ciently large to cause significant variation in the
pressure gradient. It then follows that the dependence
of srz upon z can be neglected [29,30]. This is consistent
with Eq. (64), where it is shown that for large Pr,
srz;th=srz;nth ¼ Oðe2

2Þ. Hence, the decrease of the viscosity
near the heated wall is offset by the increase of the wall
shear rate. Then, the apparent viscosity l�

a can be
approximated by: l�

a ¼ l�
0=P

0, where l�
0 ¼ l�

aðr ¼ 1;
z ¼ 0Þ.

For pure natural convection, the scaling analysis fol-
lows those performed for the boundary layer along infi-
nite vertical plates [28]. When the Prandtl number is
large, the thermal boundary layer dt,nc is thin and is
the location of the buoyancy force. Over dt,nc, combining
on one hand a balance between thermal convection and
thermal conduction (from energy equation) and on the
other hand a balance between viscous and buoyancy
forces (from momentum equation), we obtain

dt;nc ¼ O
ðunewÞ

n�1Pn�1

RaP0ð1 � r0Þ

 !1=5
2
4

3
5. ð93Þ

It is important to note that the same apparent viscosity
is used for purely forced convection and for purely nat-
ural convection, since the same fluid has to be consid-
ered for the two convective mechanisms.

A new parameter E is defined by E = dt,fc/dt,nc:

E ¼ dt;fc

dt;nc

¼ O
ðXþÞ1=3Ra1=5ð1 � r0Þ1=5

ðPunewÞ
n=5ðPunewP0Þ2=15

" #
. ð94Þ

The transition from forced convection to natural con-
vection dominant mechanism occurs approximately at
E = 1. We define Xþ

c , the critical Cameron number for
which this condition is satisfied. When E < 1,
(Xþ < Xþ

c ), the forced convection dominates and when
E > 1, (Xþ > Xþ

c ), the natural convection dominates. It
is clear that Xþ

c increases with increasing Hb.
To have an idea about the magnitude order of Xþ

c , let
us consider the electrical heat exchangers used in the
thermal treatment of the fluid foods, the Rayleigh num-
ber is of order 104. This value is obtained using
q = 103 kg/m3, k = 0.6 W/m �C, b = 10�4 �C�1, K�

e ¼
1 Pa sn, n = 0.5, U �

d ¼ 0.2 m/s, R� = 1.5 · 10�2 m and
U� = 104 W/m2. Thus, Xþ

c is of order 10�2. One can note
that is much lower than the thermal entrance length, Xþ

t ,
determined in the situation of forced convection:
Xþ

t ¼ Oð1Þ.
7. Conclusion

The characteristics of the thermal convection for a
Herschel–Bulkley fluid flowing in a horizontal circular
duct are investigated. As the Péclet number for the fluids
considered in the present study is very large, an asymp-
totic analysis is then performed. The influence of the
rheological parameters on the intensity of the secondary
flows induced on one hand by the thermo-dependency of
K� and on the other hand by the buoyancy forces is
determined. This influence arises from three different
effects: (i) Variation of the wall shear rate, u =
[Hb(1 � r0)/r0]

1/n, which control the thermal boundary
layer thickness; (ii) variation of the shear thinning of
the fluid; (iii) variation of the width of the yielded zone
(1 � r0). In order to understand how these individual
effects contribute to the flow dynamics and heat transfer,
three situations are considered: (i) forced convection
with K� = K�(T�); (ii) mixed convection with K� = const.
and (iii) mixed convection with K� = K�(T�). Finally,
useful relations are obtained for the heat transfer coeffi-
cient and the wall shear stress. The obtained results can
be used for a Bingham or a power law fluid by setting
n = 1 or r0 = 0, respectively. In addition, similar expres-
sions can be derived for an annular geometry or a plane
channel, since the reasoning is based essentially on the
assumption of a thin thermal boundary layer.
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